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Abstract

Sensory systems reliably process incoming stimuli in spite of changes in context. Most
recent models accredit this context invariance to an extraction of increasingly complex
sensory features in hierarchical feedforward networks. Here, we study how context-invariant
representations can be established by feedback rather than feedforward processing. We show
that feedforward neural networks modulated by feedback can dynamically generate invariant
sensory representations. The required feedback can be implemented as a slow and spatially
diffuse gain modulation. The invariance is not present on the level of individual neurons, but
emerges only on the population level. Mechanistically, the feedback modulation dynamically
reorients the manifold of neural activity and thereby maintains an invariant neural subspace
in spite of contextual variations. Our results highlight the importance of population-level
analyses for understanding the role of feedback in flexible sensory processing.

Introduction

In natural environments our senses are exposed to a colourful mix of sensory impressions.
Behaviourally relevant stimuli can appear in varying contexts, such as variations in lighting,
acoustics, stimulus position or the presence of other stimuli. Different contexts may require
different responses to the same stimulus, for example when the behavioural task changes
(context dependence). Alternatively, the same response may be required for different stimuli,
for example when the sensory context changes (context invariance). Recent advances have
elucidated how context-dependent processing can be performed by recurrent feedback in
neural circuits (Mante et al., 2013; Wang et al., 2018; Dubreuil et al., 2020). In contrast,
the role of feedback mechanisms in context-invariant processing is not well understood.

In the classical view, stimuli are hierarchically processed towards a behaviourally relevant
percept that is invariant to contextual variations. This is achieved by extracting increasingly
complex features in a feedforward network (Kriegeskorte, 2015; Zhuang et al., 2021; Yamins
and DiCarlo, 2016). Models of such feedforward networks have been remarkably successful
at learning complex perceptual tasks (LeCun et al., 2015), and they account for various
features of cortical sensory representations (DiCarlo and Cox, 2007; Kriegeskorte et al.,
2008; DiCarlo et al., 2012; Hong et al., 2016; Cichy et al., 2016). Yet, these models neglect
feedback pathways, which are abundant in sensory cortex (Felleman and Van Essen, 1991;
Markov et al., 2014) and shape sensory processing in critical ways (Gilbert and Li, 2013).
Incorporating these feedback loops into models of sensory processing increases their
flexibility and robustness (Spoerer et al., 2017; Alamia et al., 2021; Nayebi et al., 2021) and
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improves their fit to neural data (Kar et al., 2019; Kietzmann et al., 2019; Nayebi et al.,
2021). At the neuronal level, feedback is thought to modulate rather than drive local
responses (Sherman and Guillery, 1998), for instance depending on behavioral context (Niell
and Stryker, 2010; Vinck et al., 2015; Kuchibhotla et al., 2017; Dipoppa et al., 2018).

Here, we investigate the hypothesis that feedback modulation provides a neural
mechanism for context-invariant perception. To this end, we trained a feedback-modulated
network model to perform a context-invariant perceptual task and studied the resulting
neural mechanisms. We show that the feedback modulation does not need to be temporally
or spatially precise and can be realised by feedback-driven gain modulation in rate-based
networks of excitatory and inhibitory neurons. To solve the task, the feedback loop
dynamically maintains an invariant subspace in the population representation (Hong et al.,
2016). This invariance is not present at the single neuron level. Finally, we find that the
feedback conveys a nonlinear representation of the context itself, which can be hard to
discern by linear decoding methods.

These findings corroborate that feedback-driven gain modulation of feedforward networks
enables context-invariant sensory processing. The underlying mechanism links single neuron
modulation with its function at the population level, highlighting the importance of
population-level analyses.

Results

As a simple instance of a context-invariant task, we considered a dynamic version of the
blind source separation problem. The task is to recover unknown sensory sources, such as
voices at a cocktail party (McDermott, 2009), from sensory stimuli that are an unknown
mixture of the sources. In contrast to the classical blind source separation problem, the
mixture can change in time, for example, when the speakers move around, thus providing a
time-varying sensory context. Because the task requires a dynamic inference of the context,
it cannot be solved by feedforward networks or standard blind source separation algorithms
(e.g., independent component analysis; Bell and Sejnowski, 1995; Hyvärinen and Oja, 2000).
We hypothesised that this dynamic task can be solved by a feedforward network that is
subject to modulation from a feedback signal. In our model the feedback signal is provided
by a modulatory system that receives both the sensory stimuli and the network output
(Fig. 1a).

Dynamic blind source separation by modulation of feedforward
weights

Before we gradually take this to the neural level, we illustrate the proposed mechanism in a
simple example, in which the modulatory system provides a time-varying multiplicative
modulation of a linear two-layer network (see Methods and Models). For illustration, we
used compositions of sines with different frequencies as source signals (Fig. 1b: s1, s2).
These sources were linearly mixed to generate the sensory stimuli that the network received
as input (Fig. 1b: x1, x2). The linear mixture changed over time, akin to varying the
location of sound sources in a room (Fig. 1a). These locations provided a time-varying
sensory context that changed on a slower timescale than the sources themselves. The
feedforward network had to recover the sources from the mixed sensory stimuli. To achieve
this, we trained the modulatory system to dynamically adjust the weights of the feedforward
network such that the network output matches the sources. Because this requires a dynamic
inference of the context, the modulatory system is a recurrent neural network.

After learning, the modulated network disentangled the sources, even when the context
changed (Fig. 1b: y1, y2, Supp. Fig. S1a,b). Context changes produced a transient error in
the network’s output, but it quickly resumed matching the sources (Fig. 1b, bottom). Thus,

2/35



the modulatory system can provide dynamic feedback that enables the feedforward network
to flexibly disentangle time-varying sensory stimuli. In particular, the modulated feedforward
weights invert the linear mixture of sources by switching on the same timescale (Fig. 1c).

To quantify how well the sources were separated, we measured the correlation coefficient
of the outputs with each source over several contexts. Consistent with a clean separation,
we found that each of the two outputs strongly correlated with only one of the sources. In
contrast, the sensory stimuli showed a positive average correlation for both sources, as
expected given the positive linear mixture (Fig. 1d, left). We determined the signal clarity
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Figure 1. Dynamic blind source separation by modulation of feedforward connections.
a. Schematic of the feedforward network model receiving feedback modulation from a
modulator (a recurrent network). b. Top: Sources (s1,2), sensory stimuli (x1,2) and network
output (y1,2) for two different source locations (contexts). Bottom: Deviation of output
from the sources. c. Top: Modulated readout weights across 6 contexts (source locations);
dotted lines indicate the true weights of the inverted mixing matrix. Bottom: Deviation of
readout from target weights. d. Correlation between the sources and the sensory stimuli
(left), the network outputs (center), and calculation of the signal clarity (right). e. Signal
clarity for different noise levels in the sensory stimuli across 20 different contexts.
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as the absolute difference between the correlation with the first compared to the second
source, averaged over the two outputs, normalised by the sum of the correlations (Fig. 1d,
right; see Methods and Models). The signal clarity thus determines the degree of signal
separation, where a value close to 1 indicates a clean separation as in Fig. 1d. Note that the
signal clarity of the sensory stimuli is around 0.5 and can be used as a reference.

We next probed the network’s robustness by adding noise to the sensory stimuli. We
found that the signal clarity gradually decreased with increasing noise levels, but only
degraded to chance performance when the signal-to-noise ratio was close to 1 (1.1 dB,
Fig. 1e, Supp. Fig. S1e). In addition, the network performance did not depend on the
specific source signals (Supp. Fig. S2) or the number of sources (Supp. Fig. S3). Finally,
the network could generalise to signal frequencies it did not encounter during training
(Supp. Fig. S4).

We conclude that the dynamic blind source separation problem can be solved by a
feedback-modulated feedforward network in a way that is robust to external noise and
generalises across different signals. Since feedback-driven modulation enables flexible
context-invariant processing in a simple abstract model, we wondered how this mechanism
might be implemented at the neural level. For example, how does feedback-driven
modulation function when feedback signals are slow and imprecise? And how does the
modulation affect population activity? In the following, we will gradually increase the model
complexity to account for biological constraints and pinpoint the population-level
mechanisms of feedback-mediated invariance.

Invariance can be established by slow feedback modulation

Among the many modulatory mechanisms, even the faster ones are believed to operate on
timescales of hundreds of milliseconds (Bang et al., 2020; Molyneaux and Hasselmo, 2002),
raising the question if feedback-driven modulation is sufficiently fast to compensate for
dynamic changes in environmental context.

To investigate how the timescale of modulation affects the performance in the dynamic
blind source separation task, we studied network models, in which the modulatory feedback
had an intrinsic timescale that forced it to be slow. We found that the signal clarity
degraded only when this timescale was on the same order of magnitude as the timescale of
contextual changes (Fig. 2a). Note that timescales in this model are relative, and could be
arbitrarily rescaled. While slower feedback modulation produced a larger initial error
(Fig. 2b,c), it also reduced the fluctuations in the readout weights such that they more
closely follow the optimal weights (Fig. 2b). This speed-accuracy trade-off explains the
lower and more variable signal clarity for slow modulation (Fig. 2a), because the signal
clarity was measured over the whole duration of a context and the transient onset error
dominated over the reduced fluctuations.

To determine architectural constraints on the modulatory system, we asked how these
results depended on the input it received. So far, the modulatory system received
feedforward input (the sensory stimuli) and feedback input (the network output, see Fig. 1a),
but are both of these inputs necessary to solve the task? We found that when the
modulatory system only received the sensory stimuli, the model could still learn the task,
though it was more sensitive to slow modulation (Fig. 2d, Supp. Fig. S5). When the
modulatory system had to rely on the network output alone, task performance was impaired
even for fast modulation (Fig. 2e, Supp. Fig. S5). Thus, while the modulatory system is
more robust to slow modulation when it receives the network output, the output is not
sufficient to solve the task.

Taken together, these results show that the biological timescale of modulatiory
mechanisms does not pose a problem for flexible feedback-driven processing, as long as the
feedback modulation changes on a faster timescale than variations in the context. In fact,
slow modulation can increase processing accuracy by averaging out fluctuations in the
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feedback signal. Nevertheless, slow modulation likely requires the modulatory system to
receive both the input and output of the sensory system it modulates.
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Figure 2. The network model is not sensitive to slow feedback modulation.
a. Signal clarity in the network output for varying timescales of modulation relative to the
intervals at which the source locations change. b. Modulated readout weights across 4
source locations (contexts) for fast (top) and slow (center) feedback modulation; dotted lines
indicate the optimal weights (the inverse of the mixing matrix). Bottom: deviation of the
readout weights from the optimal weights for fast and slow modulation. Colours correspond
to the relative timescales in (a). Fast and slow timescales are 0.001 and 1, respectively.
c. Mean deviation of readout from optimal weights within contexts; averaged over 20
contexts. Colours code for timescale of modulation (see (a)). d. & e. Same as (a) but for
models in which the modulatory system receives no feedback (only the sensory stimuli x) or
no feedforward input (only the network output y), respectively.
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Invariance can be established by spatially diffuse feedback
modulation

Neuromodulators are classically believed to diffusely affect large areas of the brain.
Furthermore, signals in the brain are processed by populations of neurons. We wondered if
the proposed modulation mechanism is consistent with such biological constraints. We
therefore extended the network model such that the sensory stimuli provided the input to a
population of 100 units. A fixed linear readout of this population determined the network
output. The units in the population received spatially diffuse modulatory feedback (Fig. 3a)
such that the feedback modulation affected neighbouring units similarly. The spatial
specificity of the modulation was therefore determined by the number of distinct feedback
signals and their spatial spread (Fig. 3b, Supp. Fig. S6a).

This population-based model with less specific feedback modulation could still solve the
dynamic blind source separation task. The diffuse feedback modulation switched when the
context changed, but was roughly constant within contexts (Fig. 3c). We found that only a
few distinct feedback signals were needed for a clean separation of the sources across
contexts (Fig. 3d). Moreover, the feedback could have a spatially broad effect on the
modulated population without degrading the signal clarity (Fig. 3e, Supp. Fig. S6),
consistent with the low dimensionality of the context.

We conclude that, in our model, neuromodulation does not need to be spatially precise
to enable flexible processing. Given that the suggested feedback-driven modulation
mechanism works for slow and diffuse feedback signals, it could in principle be realised by
neuromodulatory pathways present in the brain.

Gain modulation in a hierarchical processing model

As a candidate mechanism for the suggested multiplicative modulation we consider a
neuron-specific gain modulation that scales responses of neurons without affecting their
feature selectivity (Carandini and Heeger, 2012; Ferguson and Cardin, 2020). Although gain
modulation is a broadly observed phenomenon that is attributed to a range of cellular
mechanisms (Ferguson and Cardin, 2020; Salinas and Thier, 2000), its effect at the
population level is less clear (Shine et al., 2021). We therefore asked how gain modulation
at the neuronal level changes the population representation and how this then enables
invariant processing. To this end, we extended the network model to include a ”lower-level”
and a ”higher-level” population of rate-based neurons (Fig. 4a), akin to a sensory processing
hierarchy. The lower-level population served as a neural representation of the sensory stimuli,
whereas the higher-level population was modulated by feedback. Direct projections from the
lower-level to the higher-level population were excitatory. In addition, a small population of
local inhibitory neurons provided feedforward inhibition to the higher-level population.
Similar to the previous model, modulatory feedback signals were temporally slow and
spatially diffuse. A fixed linear readout of the higher-level population determined the
network’s output. Here, the modulation of the higher-level population was implemented as a
local gain modulation that scaled the neural responses. As a specific realisation of gain
modulation, we assumed that feedback targeted inhibitory interneurons (e.g., in layer 1; Abs
et al., 2018; Ferguson and Cardin, 2020; Malina et al., 2021) that mediate the modulation
(e.g., via presynaptic inhibition; Pardi et al., 2020; Naumann and Sprekeler, 2020), such that
stronger feedback decreased the gain of neurons (Fig. 4b). We will refer to these
modulatory interneurons as modulation units m (green units in Fig. 4a).

We find that this adapted model with biological constraints could still learn the
context-invariant processing task (Supp. Fig. S7). Notably, the network’s performance did
not depend on specifics of the model architecture, such as the target of the modulation or
the number of inhibitory neurons (Supp. Fig. S8).
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Figure 3. Feedback modulation in the model can be spatially diffuse.
a. Schematic of the feedforward network with a population that receives diffuse feedback-
driven modulation. b. Spatial spread of the modulation mediated by 4 modulation units
with a width of 0.2. c. Top: Per unit modulation during 8 different contexts. Bottom:
Corresponding deviation of the network output from sources. d. Mean signal clarity across
20 contexts for different numbers of feedback signals; modulation width is 0.2. Error bars
indicate standard deviation. Purple triangle indicates default parameters used in (c). e.
Same as (d) but for different modulation widths; number of feedback signals is 4. The
modulation width ”∞” corresponds to uniform modulation across the population.

Individual neurons are not invariant to context

After the adapted model had learned to perform the task, we investigated the underlying
mechanisms at the single neuron and population level. We first simulated optogenetic
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Figure 4. Feedback-driven gain modulation in a hierarchical rate network.
a. Schematic of the rate-based network comprising a lower- and higher-level population,
Dalean weights and diffuse gain modulation. b. Decrease in gain (i.e. release probability)
with stronger modulatory feedback. c. Single neuron activity in response to activation of
modulation neurons compared to control. d. Same as (c) but for inactivation of modulation
neurons. e. Average excitatory versus inhibitory inputs to single neurons for a given context.
f. Top: Modulation of neurons in the higher-level population for 10 different contexts.
Bottom: Corresponding deviation of outputs y from sources s. g. Histogram of neuron-
specific release probabilities averaged across 20 contexts (filled, lightgreen) and during two
different contexts (yellow & darkgreen, see (c)). h. Single neuron activity in the higher-level
population for two contexts. i. Average activity of single neurons in the two contexts from
(e).

manipulations by (in-) activating the interneurons that receive the feedback signal and
mediate the modulation. Consistent with a modulation of the neural gain, activation of the
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modulatory interneurons caused divisive inhibition (Fig. 4c) in the higher-level population,
whereas inactivation caused a multiplicative amplification (Fig. 4d). Since neurons in the
higher-level population received both excitatory and inhibitory feedforward input, we
wondered whether these inputs would be correlated. Indeed, we found that the average
excitatory and inhibitory inputs to neurons in the higher-level population showed a strong
positive correlation (Fig. 4e). This was not the case when the modulation was not a gain
modulation, but specific to either excitatory or inhibitory input synapses (Supp. Fig. S8).

The gain modulation of individual neurons changed with the context and thus enabled
the flexible processing required to account for varying context (Fig. 4f). The average gain
over contexts was similar across neurons, whereas within a context the gains were broadly
distributed (Fig. 4g). Changes in gain modified the pattern of activity in the higher-level
population (Fig. 4h), and neurons were affected heterogeneously (Fig. 4i). Therefore, single
neurons in the higher-level population were not invariant to contexts.

Given that the readout of the higher-level population activity was fixed, it is not obvious
how the context-dependent single neuron responses could give rise to a context-independent
network output. One possible explanation is that, depending on the current context,
different subpopulations in the higher-level population encode distinct sources and that the
gain modulation regulates their relative contribution to the output. We therefore determined
the signal clarity for each stage of the feedforward processing hierarchy. As expected, there
was no clean separation in the sensory stimuli or their neural representation (the lower-level
population). Intriguingly, the same was true for the higher-level population (Fig. 5a), in
which single neurons showed different degrees of correlation with either source for a given
context (Fig 5b). Although some neurons were more correlated with one compared to the
other source, their signal clarity was still low compared to the signal clarity in the network
output (Fig. 5b, c). Furthermore, the signal clarity of individual neurons varied with context
(Fig. 5c). We conclude that single neurons were not context invariant and thus the sources
were not separated at the single neuron level.

Invariance emerges at the population level

Instead of the single neuron level, the context-invariance could arise at the population level.
To test this hypothesis, we asked how well the sources could be decoded across contexts at
the different processing stages of the feedforward network. To this end, we trained a single
linear decoder of the sources on one set of contexts and tested its generalisation to novel
contexts. We found that the decoding performance was poor for the sensory stimuli and the
lower-level population (Fig. 5d), indicating that these processing stages did not contain a
context-invariant representation. In contrast, the input signals could be decoded with high
accuracy from the higher-level population. This shows that while individual neurons were
not invariant, the population activity contained a context-invariant subspace that enabled a
fixed readout to decode the sources across contexts.

Since single neurons in the population were not invariant to context, the population
representation must also contain contextual information. Indeed, contextual variables could
be linearly decoded from the higher-level population activity (Fig. 5e). In contrast, decoding
the context from the modulation units gave a much lower accuracy. This is surprising,
because the modulation units must contain information about the inferred context, given
that they mediate the gain modulation that establishes a context-invariant subspace.
Moreover, the modulation units clearly co-varied with the contextual variables (Fig. 5f). To
understand these seemingly conflicting results, we examined how the context was
represented in the activity of the modulation units. We found that the modulation unit
activity did encode the contextual variables, albeit in a nonlinear way (Fig. 5g). The
underlying reason is that the feedback modulation needs to remove contextual variations,
which requires nonlinear computations. Specifically, the blind source separation task requires
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an inversion of the linear mixture of sources. Consistent with this idea, non-linear decoding
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Figure 5. Emergence of a context-invariant representation at the population level.
a. Signal clarity at different stages in the feedforward network for 10 contexts. b. Absolute
correlation of single neuron activity in the higher-level population with one compared to
other source. The average signal clarity resulting from these correlations is 0.34. c. Signal
clarity of single neurons in the higher-level population in one compared to another context.
Blue-green lines indicate the smallest signal clarity measured in the network output (see
a). d. Linear decoding performance of the sources from different stages of the feedforward
network for 10 contexts. The decoder is trained on a different set of contexts and the same
decoder is used for all tested contexts. e. Linear decoding performance of the context (i.e.
mixing) from the network. f. Context variables (e.g. source locations, top) and activity
of modulatory interneurons (bottom) over contexts; one of the modulatory interneurons is
silent in all contexts. g. Left: Activity of the three active modulatory interneurons (see
f) for different contexts. The context variables are colour-coded as indicated on the right.
h. Performance of different decoders trained to predict the context from the modulatory
interneuron activity. Decoder types are a linear decoder, a decoder on a quadratic expansion
and a linear decoder trained to predict the inverse of the mixing matrix.
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approaches performed better (Fig. 5h), and the modulatory units contained a linearly
decodable representation of the ”inverse context” (i.e., the inverse mixing matrix, see
Methods and Models).

The question remains how exactly the context-invariant subspace is maintained by feedback
modulation. In contrast to a pure feedforward model of invariant perception (Kriegeskorte,
2015; Yamins and DiCarlo, 2016), feedback-mediated invariance requires time to establish
after contextual changes. Experimentally, hallmarks of this adaptive process should be
visible when comparing the population representations immediately after a change and at a
later point in time. Our model allows to cleanly separate the early and the late
representation by freezing the feedback signals in the initial period after a contextual change
(Fig. 6a), thereby disentangling the effects of feedback and context on population activity.

The simulated experiment consisted of three stages: First, the feedback was intact for a
particular context and the network outputs closely tracked the sources. Second, the context
was changed but the feedback modulation was frozen at the same value as before. As
expected, this produced deviations of the output from the sources. Third, for the same
context the feedback modulation was turned back on, which reinstated the source signals in
the output. In this experiment, we used pure sines as signals for visualisation purposes
(Fig. 6b). As in the linear decoding approach (Fig. 5d), we trained a linear decoder of the
signals on the higher-level population activity across contexts. Since this readout is obtained
from the data, this procedure does not require knowledge of the readout in the network
model. Note that the trained decoder and the network readout are not necessarily identical,
due to the high dimensionality of the population activity compared to the sources. The
obtained context-invariant linear readout reproduced the signal pattern for both contexts in
the experiment, provided the feedback modulation was intact (Fig. 6b left & right, see also
Fig. 5d). Conversely, for frozen feedback modulation the decoded signal representation was
rotated and stretched after the context changed (Fig. 6b, center).

Is this transformation of the representation simply reversed by the feedback modulation?
Considering an additional dimension (the first principal component of the population
activity) shows that this is not the case. Changing the context rotates the signal
representation within a two-dimensional manifold (Fig. 6c, left & center), whereas the
feedback modulation causes a different transformation that rotates the representation out of
this manifold. In doing so, it realigns the population activity with the context-invariant
readout (Fig. 6b & c, right). Note that the population representation resides on a
two-dimensional manifold in all three stages of the experiment because the sensory input is
two-dimensional. Varying the context does not change the manifold but how the sensory
input is mapped onto it. Varying the feedback signals, however, heterogeneously modulates
the gain in the higher-level population and thereby changes the orientation of the manifold,
thus generating higher-dimensional transformations. The role of feedback-driven modulation
in our model therefore is to re-orient the population representation in response to changing
contexts such that an invariant subspace is preserved.

Discussion

Accumulating evidence suggests that sensory processing is strongly modulated by top-down
feedback projections (Gilbert and Li, 2013; Keller and Mrsic-Flogel, 2018). Here, we
demonstrate that feedback-driven gain modulation of a feedforward network could underlie
stable perception in varying contexts. The feedback can be slow, spatially diffuse and
low-dimensional. To elucidate how the context invariance is achieved, we performed single
neuron and population analyses. We found that invariance was not evident at the single
neuron level, but only emerged in a subspace of the population representation. The feedback
modulation dynamically transformed the manifold of neural activity patterns such that this
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Figure 6. Gain modulation re-orients the population representation.
a. Network output (top) and feedback modulation (release probability p, bottom) for two
contexts. The feedback modulation is frozen for the initial period after the context changes.
b. Population activity projected onto a readout space. The readout was trained to predict
the sources from the population activity across different contexts. The signal representation
is shown for different phases of the experiment. Left: context 1 with intact feedback, center:
context 2 with frozen feedback, right: context 2 with intact feedback. The light blue trace
corresponds to the sources. c. Same as (b) but with the first principal component of the
higher-level population activity as third dimension. The blue plane spans the population
activity manifold in context 1 (left). Changing the context transforms the activity within the
manifold (center), whereas the feedback re-orients the activity into readout space (right).

subspace was maintained across contexts. Our results provide further support that gain
modulation at the single cell level enables non-trivial computations at the population level
(Failor et al., 2021; Shine et al., 2021).
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Invariance in visual perception

Although we used dynamic blind source separation as a simple instance of a
context-invariant perceptual task, the suggested mechanism is not limited to a given sensory
modality. The key nature of the task is that it contains stimulus dimensions that need to be
encoded (the sources) and dimensions that need to be ignored (the context). In visual
object recognition, for example, the identity of visual objects needs to be encoded, while
contextual variables such as size, location, orientation, or surround need to be ignored.
Neural hallmarks of invariant object recognition are present at the population level (DiCarlo
and Cox, 2007; DiCarlo et al., 2012; Hong et al., 2016), and to some extent also on the
level of single neurons (Quiroga et al., 2005). Classically, the emergence of invariance has
been attributed to the extraction of invariant features in feedforward networks (Riesenhuber
and Poggio, 1999; Wiskott and Sejnowski, 2002; DiCarlo and Cox, 2007; Kriegeskorte,
2015), but recent work also highlights the role of recurrence and feedback (Gilbert and Li,
2013; Kar et al., 2019; Kietzmann et al., 2019). Here, we focused on the role of feedback,
but clearly, feedforward and feedback processes are not mutually exclusive and likely work in
concert to create invariance. Their relative contribution to invariant perception requires
further studies and may depend on the invariance in question.

Mechanisms of feedback-driven gain modulation

There are different ways in which feedback can affect local processing. Here, we focused on
gain modulation (McAdams and Maunsell, 1999; Reynolds and Heeger, 2009; Vinck et al.,
2015). Neuronal gains can be modulated by a range of mechanisms (Ferguson and Cardin,
2020; Shine et al., 2021). In our model, the mechanism needs to satisfy a few key
requirements: i) the modulation is not uniform across the population, ii) it operates on a
timescale similar to that of changes in context, and iii) it is driven by feedback projections.

Classical neuromodulators such as acetylcholine (Disney et al., 2007; Kawai et al., 2007),
dopamine (Thurley et al., 2008) or serotonin (Azimi et al., 2020) are signalled through
specialised neuromodulatory pathways from subcortical nuclei (van den Brink et al., 2019).
These neuromodulators can control the neural gain depending on behavioural states such as
arousal, attention or expectation of rewards (Ferguson and Cardin, 2020; Hasselmo and
McGaughy, 2004; Bayer and Glimcher, 2005; Polack et al., 2013; Kuchibhotla et al., 2017).
Their effect is typically thought to be brain-wide and long-lasting, but recent advances in
measurement techniques (Sabatini and Tian, 2020; Lohani et al., 2020) indicate that it
could be area- or even layer-specific, and vary on sub-second time scales (Lohani et al.,
2020; Bang et al., 2020; Poorthuis et al., 2013; Pinto et al., 2013).

More specific feedback projections arrive in layer 1 of the cortex, where they target the
distal dendrites of pyramidal cells and inhibitory interneurons (Douglas and Martin, 2004;
Roth et al., 2016; Marques et al., 2018). Dendritic input can change the gain of the neural
transfer function on fast timescales (Larkum et al., 2004; Jarvis et al., 2018). The spatial
scale of the modulation will depend on the spatial spread of the feedback projections and
the dendritic arbourisation. Feedback to layer 1 interneurons provides an alternative
mechanism of local gain control. In particular, neuron-derived neurotrophic factor-expressing
interneurons (NDNF) in layer 1 receive a variety of top-down feedback projections and
produce GABAergic volume transmission (Abs et al., 2018), thereby down-regulating
synaptic transmission (Miller, 1998; Laviv et al., 2010). This gain modulation can act on a
timescale of hundreds of milliseconds (Branco and Staras, 2009; Urban-Ciecko et al., 2015;
Malina et al., 2021; Molyneaux and Hasselmo, 2002), and, although generally considered
diffuse, can also be synapse type-specific (Chittajallu et al., 2013).

The question remains where in the brain the feedback signals originate. Our model
requires the responsible network to receive feedforward sensory input to infer the context. In
addition, feedback inputs from the sensory to the modulatory system allow a better control
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of the modulated network state. Higher-order thalamic nuclei are ideally situated to
integrate different sources of sensory inputs and top-down feedback (Sampathkumar et al.,
2021) and mediate the resulting modulation by targeting layer 1 of lower-level sensory areas
(Purushothaman et al., 2012; Roth et al., 2016; Sherman, 2016). In our task setting, the
inference of the context requires the integration of sensory signals over time and therefore
recurrent neural processing. For this kind of task, thalamus may not be the site of
contextual inference, because it lacks the required recurrent connectivity (Halassa and
Sherman, 2019). However, contextual inference may be performed by higher-order cortical
areas, and could either be relayed back via the thalamus or transmitted directly, for example,
via cortico-cortical feedback connections.

Testable predictions

Our model makes several predictions that could be tested in animals performing invariant
sensory perception. Firstly, our model indicates that invariance across contexts may only be
evident at the neural population level, but not on the single cell level. Probing context
invariance at different hierarchical stages of sensory processing may therefore require
population recordings and corresponding statistical analyses such as neural decoding (Glaser
et al., 2020). Secondly, we assumed that this context invariance is mediated by feedback
modulation. The extent to which context invariance is enabled by feedback on a particular
level of the sensory hierarchy could be studied by manipulating feedback connections. Since
layer 1 receives a broad range of feedback inputs from different sources, this may require
targeted manipulations. If no effect of feedback on context invariance is found, this may
either indicate that feedforward mechanisms dominate or that the invariance in question is
inherited from an earlier stage, in which it may well be the result of feedback modulation.
Given that feedback is more pronounced in higher cortical areas (McAdams and Maunsell,
1999; Pardi et al., 2020), we expect that the contribution of feedback may play a larger role
for the more complex forms of invariance further up in the sensory processing hierarchy.
Thirdly, for feedback to mediate context invariance, the feedback projections need to contain
a representation of the contextual variables. Our findings suggest, however, that the
detection of this representation may require a non-linear decoding method. Finally, a
distinguishing feature of feedback and feedforward mechanisms is that feedback mechanisms
take more time. We found that immediately following a sudden contextual change, the
neuronal representation initially changes within the manifold associated with the previous
context. Later, the feedback reorients the manifold to reestablish the invariance on the
population level. Whether these dynamics are a signature of feedback processing or also
present in feedforward networks will be an interesting question for future work.

Comparison to prior work

Computational models have implicated neuronal gain modulation for a variety of functions
(Salinas and Sejnowski, 2001; Reynolds and Heeger, 2009). Even homogeneous changes in
neuronal gain can achieve interesting population effects (Shine et al., 2021), such as
orthogonalisation of sensory responses (Failor et al., 2021). More heterogeneous gain
modulation provides additional degrees of freedom that enables, for example, attentional
modulation (Reynolds and Heeger, 2009; Carandini and Heeger, 2012), coordinate
transformations (Salinas and Thier, 2000) and – when amplified by recurrent dynamics – a
rich repertoire of neural trajectories (Stroud et al., 2018). Gain modulation has also been
suggested as a means to establish invariant processing (Salinas and Abbott, 1997), as a
biological implementation of dynamic routing (Olshausen et al., 1993). While the
modulation in these models of invariance can be interpreted as an abstract form of feedback,
the resulting effects on the population level were not studied.
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An interesting question is by which mechanisms the appropriate gain modulation is
computed. In previous work, gain factors were often learned individually for each context, for
example by gradient descent or Hebbian plasticity (Olshausen et al., 1993; Salinas and
Abbott, 1997; Stroud et al., 2018), mechanisms that may be too slow to achieve invariance
on a perceptual timescale (Wiskott, 2006). In our model, by contrast, the modulation is
dynamically controlled by a recurrent network. Once it has been trained, such a recurrent
modulatory system can rapidly infer the current context, and provide an appropriate
feedback signal on a timescale only limited by the modulatory mechanism.

Limitations and future work

In our model, we simplified many aspects of sensory processing. Using simplistic sensory
stimuli – compositions of sines – allowed us to focus on the mechanisms at the population
level, while avoiding the complexities of natural sensory stimuli and deep sensory hierarchies.
Although we do not expect conceptual problems in generalising our results to more complex
stimuli, such as speech or visual stimuli, the associated computational challenges are
substantial. For example, the feedback in our model was provided by a recurrent network,
whose parameters were trained by back-propagating errors through the network and through
time. This training process can get very challenging for large networks and long temporal
dependencies (Bengio et al., 1994; Pascanu et al., 2013).

In our simulations we trained the whole model – the modulatory system, the sensory
representation and the readout. For the simplistic stimuli we used, we observed that the
training process mostly concentrated on optimising the modulatory system and readout,
while a random mapping of sensory stimuli to neural representations seemed largely
sufficient to solve the task. For more demanding stimuli, we expect that the sensory
representation the modulatory system acts upon may become more important. A well-suited
representation could minimise the need for modulatory interventions (Finn et al., 2017), in a
coordinated interaction of feedforward and feedback.

To understand the effects of feedback modulation on population representations, we
included biological constraints in the feedforward network and the structure of the
modulatory feedback. However, we did not strive to provide a biologically plausible
implementation for the computation of the appropriate feedback signals, and instead used
an off-the-shelf recurrent neural network (Hochreiter and Schmidhuber, 1997). The question
how these signals could be computed in a biologically plausible way remains for future
studies. The same applies to the question how the appropriate feedback signals can be
learned by local learning rules (Lillicrap et al., 2020) and how neural representations and
modulatory systems learn to act in concert.

Methods and Models

To study how feedback-driven modulation can enable flexible sensory processing, we built
models of feedforward networks that are modulated by feedback. The feedback was
dynamically generated by a modulatory system, which we implemented as a recurrent
network. The weights of the recurrent network were trained such that the feedback
modulation allowed the feedforward network to solve a flexible invariant processing task.

The dynamic blind source separation task

As an instance of flexible sensory processing we used a dynamic variant of blind source
separation. In classical blind source separation, two or more unknown time-varying sources
~s(t) need to be recovered from a set of observations (i.e. sensory stimuli) ~x(t). The sensory
stimuli are composed of an unknown linear mixture of the sources such that ~x(t) = A~s(t)
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with a fixed mixing matrix A. Recovering the sources requires to find weights W such that
W~x(t) ≈ ~s(t). Ideally, W is equal to the pseudo-inverse of the unknown mixing matrix A,
up to permutations.

In our dynamic blind source separation task, we model variations in the stimulus context
by changing the linear mixture over time – albeit on a slower timescale than the
time-varying signals. Thus, the sensory stimuli are constructed as

~x(t) = A(t)~s(t) + σn~ξ(t) , (1)

where A(t) is a time-dependent mixing matrix and σn is the amplitude of additive white

noise ~ξ(t). The time-dependent mixing matrix determines the current context and was
varied in discrete time intervals nt, meaning that the mixing matrix A(t) (i.e. the context)
was constant for nt samples before it changed. The goal of the dynamic blind source
separation task is to recover the original signal sources ~s from the sensory stimuli ~x across
varying contexts. Thus, the network model output needs to be invariant to the specific
context of the sources. Note that while the context was varied, the sources themselves were
the same throughout the task, unless stated otherwise. Furthermore, in the majority of
experiments the number of source signals and sensory stimuli was ns = 2. A list of default
parameters for the dynamic blind source separation task can be found in Table 1.

Source signals

As default source signals we used two compositions of two sines each (”chords”) with a
sampling rate of fs = 8000Hz that can be written as

s1(t) = sin(2πf11t/fs) + sin(2πf12t/fs) (2)

s2(t) = sin(2πf21t/fs) + sin(2πf22t/fs) (3)

with frequencies f11 = 100 Hz, f12 = 125 Hz, f21 = 150 Hz and f22 = 210 Hz. Note that
in our model we measure time as the number of samples from the source signals, meaning
that timescales are relative and could be arbitrarily rescaled.

In Fig 6, we used pure sine signals with frequency f for visualisation purposes:
si = sin(2πft/fs). We also validated the model on signals that are not made of sine waves,
as a sawtooth and a square wave signal (Supp. Fig. S3). Unless stated otherwise, the same
signals were used for training and testing the model.

Time-varying contexts

We generated the mixing matrix A for each context by drawing random weights from a
uniform distribution between 0 and 1, allowing only positive mixtures of the sources. The
dimension of the mixing matrices was determined by number of signals ns such that A was
of shape ns × ns. To keep the overall amplitude of the sensory stimuli in a similar range
across different mixtures, we normalised the row sums of each mixing matrix to one. In the
case of ns = 2, this implies that the contexts (i.e. the mixing matrices) are drawn from a
2-dimensional manifold. In addition, we only used the randomly generated mixing matrices
whose determinant was larger than some threshold value. We did this to ensure that each
signal mixture was invertible and that the weights needed to invert the mixing matrix were
not too extreme. A threshold value of 0.2 was chosen based on visual inspection of the
weights from the inverted mixing matrix.
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Modulated feedforward network models

Throughout this work, we modelled feedforward networks of increasing complexity. Common
to all networks was that they received the sensory stimuli ~x and should provide an output ~y
that matches the source signals ~s. In the following, we first introduce the simplest model
variant and how it is affected by feedback from the modulatory system, and subsequently
describe the different model extensions.

Modulation of feedforward weights by a recurrent network

In the simplest feedforward network the network output ~y(t) is simply a linear readout the
sensory stimuli ~x(t), with readout weights that are dynamically changed by the modulatory
system:

~y(t) = (M(t)�W0) ~x(t) (4)

where W0 are the baseline weights and M(t) the modulation provided by the modulatory
system. M(t) is of the same shape as W0 and determines the element-wise multiplicative
modulation of the baseline weights. Because the task requires the modulatory system to
dynamically infer the context, we modelled it as a recurrent network – more specifically a
long-short term memory network (LSTMs; Hochreiter and Schmidhuber, 1997) – with
Nh = 100 hidden units. In particular, we used LSTMs with forget gates (Gers et al., 2000)
but no peephole connections (for an overview of LSTM variants see Greff et al. (2016)).

In this work we treated the LSTM as a black-box modulatory system that receives the
sensory stimuli and the feedforward network’s output and provides the feedback signal in
return (Fig. 1a). A linear readout of the LSTM’s output determines the modulation M(t) in
Eq. (4). In brief, this means that

M(t) = LSTM(~x(t), ~y(t)) , (5)

where LSTM(·) is a function that returns the LSTM readout. For two-dimensional sources
and sensory stimuli, for instance, LSTM(·) receives a concatenation of the two-dimensional
vectors ~x(t) and ~y(t) as input and returns a two-by-two feedback modulation matrix – one
multiplicative factor for each weight in W0. The baseline weights W0 were randomly drawn
from the Gaussian distribution N (1, 0.001) and fixed throughout the task. The LSTM
parameters and readout were learned during training of the model.

Extension 1: Reducing the temporal specificity of feedback modulation

To probe our model’s sensitivity to the timescale of the modulatory feedback (Fig. 2), we
added a temporal filter to Eq. (5). In that case the modulation M(t) followed the dynamics

τ
dM(t)

dt
= −M(t) + LSTM(~x(t), ~y(t)) , (6)

Table 1. Default parameters of the dynamic blind source separation task

parameter symbol value
number of signals ns 2
number of samples in context nt 1000
additive noise σn 0.001
sampling frequency fs 8 kHz
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with τ being the time constant of modulation. For small τ , the feedback rapidly affects the
feedforward network, whereas larger τ imply a slowly changing modulatory feedback signal.
The unit of this timescale is the number of samples from the source signals. Note that the
timescale of the modulation should be considered relative to the timescale of the context
changes nt. As a default time constant we used τ = 100 < nt (see Table 2).

Extension 2: Reducing the spatial specificity of feedback modulation

To allow for spatially diffuse feedback modulation (Fig. 3), we added an intermediate layer
between the sensory stimuli and the network output. This intermediate layer consisted of a
population of Nz = 100 units that were modulated by the feedback, where neighbouring
units were modulated similarly. More specifically, the units were arranged on a ring to allow
for a spatially constrained modulation without boundary effects. The population’s activity
vector ~z(t) is described by

~z(t) = ~m(t)� (W x~x(t)) , (7)

with the sensory stimuli ~x(t), a weight matrix W x of size Nz × ns and the vector of
unit-specific multiplicative modulations ~m(t). Note that the activity of the units was not
constrained to be positive here. The output of the network was then determined by a linear
readout of the population activity vector according to

~y(t) = W ro~z(t) (8)

with a fixed readout matrix W ro.
The modulation to a single unit i was given by

τ
dmi(t)

dt
= −mi(t) +

NFB∑
j=1

Kij lj , (9a)

with lj = LSTM(x(t), y(t))j . (9b)

Here, τ is the modulation time constant, K a kernel that determines the spatial specificity
of modulation, LSTM(·)j the j-th feedback signal from the LSTM and NFB the total
number of feedback signals. As in the simple model, the NFB feedback signals were
determined by a linear readout from LSTM.

The modulation kernel K was defined as a set of von Mises functions:

Kij = exp

(
1

σ2
m

cos
(
zloci − llocj

))
, (10)

where zloci = 2πi
Nz
∈ [0, 2π[ represents the location of the modulated unit i on the ring

and llocj the ”preferred location” of modulatory unit j, i.e., the location on the ring that it

modulates most effectively. These ”preferred locations” llocj of the feedback units were

evenly distributed on the ring. The variance parameter σ2
m determines the spatial spread of

the modulatory effect of the feedback units, i.e., the spatial specificity of the modulation.
Overall, the spatial distribution of the modulation was therefore determined by the number
of distinct feedback signals NFB and their spatial spread σ2

m (see Table 2 for a list of
network parameters).

Extension 3: Hierarchical rate-based network

We further extended the model with spatial modulation (Eqs. (7)–(10)) to include a
two-stage hierarchy, positive rates and synaptic weights that obey Dale’s law. Furthermore,
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we implemented the feedback modulation as a gain modulation that scales neural rates but
keeps them positive. To this end, we modelled the feedforward network as a hierarchy of a
lower-level and a higher-level population. Only the higher-level population received feedback
modulation. The lower-level population consisted of NL = 40 rate-based neurons and the
population activity vector was given by

~zL(t) =
[
WLx~x(t)

]
+

, (11)

where WLx is a fixed weight matrix, ~x(t) the sensory stimuli and the rectification
[·]+ = max(0, ·) ensures that rates are positive. The lower-level population thus provides a
neural representation of the sensory stimuli. The higher-level population consisted of
NH = 100 rate-based neurons that received feedforward input from the lower-level
population. The feedforward input consisted of direct excitatory projections as well as
feedforward inhibition through a population of NI = 20 local inhibitory neurons. The
activity vector of the higher-level population ~zH(t) was thus given by

~zH(t) =
[
~p(t)� (WHL~zL(t)−WHI~zI(t))

]
+

(12)

~zI(t) =
[
W IL~zL(t)

]
+

. (13)

Here WHL, WHI and W IL are positive weight matrices, ~zI(t) the inhibitory neuron
activities and ~p(t) the neuron-specific gain modulation factors. As for the spatially
modulated network of Extension 2, the network output ~y(t) was determined by a fixed linear
readout W ro (see Eq. (8)). The distributions used to randomly initialise the weight matrices
are provided in Table 3.

Again, the modulation was driven by feedback from the LSTM, but in this model variant
we assumed inhibitory feedback, i.e., stronger feedback signals monotonically decreased the
gain. More specifically, we assumed that the feedback signal targets a population of
modulation units ~m, which in turn modulate the gain in the higher-level population. The
gain modulation of neuron i was constrained between 0 and 1 and determined by

pi(t) =
1

1 + exp(mi(t))
(14)

with mi(t) being the activity of a modulation unit i, which follows the same dynamics as in
Eq. (9a) (see Fig. 4a).

Table 2. Default parameters of the network models

parameter symbol value
number of hidden units in LSTM Nh 100
number of units in middle layer z Nz 100
number of distinct feedback signals NFB 4
number of neurons in lower-level population NL 40
number of neurons in higher-level population NH 100
number of inhibitory neurons NI 20
timescale of modulation τ 100
spatial spread of modulation σ2

m 0.2
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Training the model

We used gradient descent to find the model parameters that minimise the difference
between the source signal ~s(t) and the feedforward network’s output ~y(t):

L =

nt∑
t=1

dist(~s(t), ~y(t)) (15)

with a distance measure dist(·). We used the machine learning framework PyTorch (Paszke
et al., 2019) to simulate the network model, obtain the gradients of the objective L by
automatic differentiation and update the parameters of the LSTM using the Adam optimiser
(Kingma and Ba, 2014) with a learning rate of η = 10−3. As distance measure in the
objective we used a smooth variant of the L1 norm (PyTorch’s smooth L1 loss variant),
because it is less sensitive to outliers than the mean squared error (Huber, 1964).

During training, we simulated the network dynamics over batches of 32 trials using
forward Euler with a timestep of ∆t = 1. Each trial consisted of nt time steps (i.e. samples)
and the context (i.e. mixing matrix) differed between trials. Since the model contains
feedback and recurrent connections, we trained it using backpropagation through time
(Werbos, 1990). This means that for each trial, we simulated the model and computed the
loss for every time step. At the end of the trial we propagated the error through the nt
steps of the model to obtain the gradients and updated the parameters accordingly.
Although the source signals were the same in every trial, we varied their phase independently
across trials to prevent the LSTM from learning the exact signal sequence. To this end, we
generated 16,000 samples of the source signals and in every batch randomly selected chunks
of nt samples independently from each source. Model parameters were initialised according
to the distributions listed in Table 3.

In all model variants we optimised the parameters of the modulator (input, recurrent and
readout weights as well as the biases of the LSTM; see Eq. (5) & (9b)). The parameters
were initialised with the defaults from the corresponding PyTorch modules, as listed in
Table 3. To facilitate the training in the hierarchical rate-based network despite additional
constraints, we also optimised the feedforward weights WHL, WHI, W IL, WLx and W ro. In
principle, this allows to adapt the representation in the two intermediate layers such that the
modulation is most effective. However, although we did not quantify it, we observed that
optimising the network readout W ro facilitated the training the most, suggesting that a
specific format of the sensory representations was not required for an effective modulation.

To prevent the gain modulation factor from saturating at 0 or 1, we added a
regularisation term R to the loss function Eq. (15) that keeps the LSTM’s output small:

R = λout

nt∑
t=1

NFB∑
j=1

∣∣LSTM(x(t), y(t))j
∣∣ (16)

with λout = 10−5.
Gradient values were clipped between -1 and 1 before each update to avoid large

updates. For weights that were constrained to be positive, we used their absolute value in
the model. Each network was trained for 10,000 to 12,000 batches and for 5 random
initialisations (Supp. Fig. S1).

Testing and manipulating the model

We tested the network model performance on an independent random set of contexts (i.e.
mixing matrices), but with the same source signals as during training. During testing, we
also changed the context every nt steps, but the length of this interval was not crucial for
performance (Supp. Fig. S1d).
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To manipulate the feedback modulation in the hierarchical rate-based network (see
Fig. 4), we provided an additional input to the modulation units m in Eq. (9a). We used an
input of 3 or −3 depending on whether the modulation units were activated or inactivated,
respectively. To freeze the feedback modulation (see Fig. 6), we discarded the feedback
signal and held the local modulation p in Eq. (14) at a constant value determined by the
feedback before the manipulation.The dynamics of the LSTM were continued, but remained
hidden to the feedforward network until the freezing was stopped.

Data analysis

Signal clarity

To determine task performance, we measured how clear the representation of the source
signals is in the network output. We first computed the correlation coefficient of each signal
si with each output yj

rij =

∑
t(si(t)− s̄i)(yj(t)− ȳj)

σs,iσy,j
, (17)

where s̄i and ȳj are the respective temporal mean and σs,i and σy,j the respective temporal
standard deviations. The signal clarity in output yj is then given by the absolute difference
between the absolute correlation with one compared to the other signal:

cj = | |r1j | − |r2j | | . (18)

By averaging over outputs we determined the overall signal clarity within the output. Note
that the same measure can be computed on other processing stages of the feedforward
network. For instance, we used the signal clarity of sources in the sensory stimuli as a
baseline control.

Signal-to-noise ratio

The signal-to-noise ratio in the sensory stimuli was determined as the variability in the signal
compared to the noise. Since the mean of both the stimuli and the noise were zero, the
signal-to-noise ratio could be computed by

SNR =
σ2
s

σ2
n

,

Table 3. Distributions used for randomly initialised weight parameters

weights distribution
W0 N (1, 0.001)
W x N (0, 0.5)
WLx N (0, 0.5)
W ro N (0, 0.5)
WHL N (1, 0.5) · 20/NH

W IL N (1, 0.5)/NI

WHI N (1, 1) · 20/NH

LSTM parameters U(−
√

1/NH,
√

1/NH)

LSTM readout U(−
√

1/NFB,
√

1/NFB)
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where σn was the standard deviation of the additive white noise and σs the measured
standard deviation in the noise-free sensory stimuli, which was around 0.32. As a scale of
the signal-to-noise ratio we used decibels (dB), i.e., we used dB = 10 log10(SNR).

Linear decoding analysis

Signal decoding. We investigated the population-level invariance by using a linear
decoding approach. If there was an invariant population subspace, the source signals could
be decoded by the same decoder across different contexts. We therefore performed linear
regression between the activity in a particular population and the source signals. This linear
decoder was trained on nc = 10 different contexts with nt = 1, 000 time points each, such
that the total number of samples was 10, 000. The linear decoding was then tested on 10
new contexts and the performance determined using the R2 measure.

Context decoding. We took a similar approach to determine from which populations the
context could be decoded. For the dynamic blind source separation task the context is given
by the source mixture, as determined by the mixing matrix. Since we normalised the rows of
each mixing matrix, the context was determined by two context variables. We calculated the
temporal average of the neuronal activities within each context and performed a linear
regression of the context variables onto these averages. To exclude onset transients, we only
considered the second half (500 samples) of every context. Contexts were sampled from the
two-dimensional grid of potential contexts. More specifically, we sampled 20 points along
each dimension and excluded contexts, in which the sensory stimuli were too similar
(analogously to the generation of mixing matrices), leaving 272 different contexts (see
Fig. 5g, right). The linear decoding performance was determined with a 5-fold
cross-validation and measured using R-squared. Since the modulatory feedback signals
depend non-linearly on the context (Fig. 5g), we tested two non-linear versions of the
decoding approach. First, we performed a quadratic expansion of the averaged population
activity before a linear decoding. Second, we tested a linear decoding of the inverse mixing
matrix (four weights) instead of the two variables determining the context.

Population subspace analysis

Analogous to the signal decoding, the context-invariant population subspace was derived by
training a linear readout of the source signal from the higher-level population over 20
different contexts. To visualise the higher-level population activity in the invariant subspace
we projected the activity vector onto these readout weights and the first principal
component.

Code availability

The code for models and data analysis will be made available upon publication of the project.
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Figure S1. Robustness of the feedback-driven modulation mechanism. a. Loss over
training for 5 different random initialisations of the model and b. signal clarity for 20 test
contexts in the corresponding trained networks. The model performance is robust across
model instantiations. c. Samples from the two default signals are uncorrelated. d. Signal
clarity for different lengths of the context during testing. The length of the context interval
is not crucial for performance, indicating that the network did not learn the interval by heart.
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Figure S2. Model performance for two different sets of source signals. Left: Compo-
sitions of sines with f11 = 120 Hz, f12 = 2.2 Hz, f21 = 100 Hz and f22 = 145 Hz. Right:
Sawtooth function with frequency 140 Hz and composed sine of 150 Hz and 210 Hz. a1/2.
Loss over training. b1/2. Signal clarity for 20 test contexts measured in the sensory stimuli
and the network output. c1/2. Example traces of the sources and the network output (top)
and corresponding deviation between them (bottom). The context changes at time 0. d1/2.
Top: Readout weights across 6 contexts; dotted lines indicate the optimal weights. Bottom:
Deviation of readout from the optimal weights.
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Figure S8. Performance of the rate-based hierarchical network does not depend on
specifics of the model architecture. a. Signal clarity for models in which excitatory,
inhibitory or both types of synapses are modulated by feedback; measured over 20 contexts.
b. Same as (a) but for different numbers of inhibitory neurons NI (relative to the number
of neurons in the higher-level population). Colours correspond to the targets of modulation
from (a). The yellow arrow indicates the default parameter used in the main results. The star
indicates networks without feedforward inhibition (see (d)). c. Mean excitatory compared to
inhibitory input to neurons in the higher-level population, measured during a fixed context
for the different model architectures in (a). d. Top: Modulation of neurons in the higher-
level population across 10 contexts without feedforward inhibition. The modulation does
not switch with the context but fluctuates on a faster timescale. Bottom: Corresponding
deviation of the network output from the sources.
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